Liouville Correspondences between Integrable Hierarchies
نویسندگان
چکیده
In this paper, we study explicit correspondences between the integrable Novikov and Sawada–Kotera hierarchies, and between the Degasperis–Procesi and Kaup–Kupershmidt hierarchies. We show how a pair of Liouville transformations between the isospectral problems of the Novikov and Sawada–Kotera equations, and the isospectral problems of the Degasperis–Procesi and Kaup–Kupershmidt equations relate the corresponding hierarchies, in both positive and negative directions, as well as their associated conservation laws. Combining these results with the Miura transformation relating the Sawada–Kotera and Kaup– Kupershmidt equations, we further construct an implicit relationship which associates the Novikov and Degasperis–Procesi equations.
منابع مشابه
Liouville Correspondence Between the Modified KdV Hierarchy and Its Dual Integrable Hierarchy
We study an explicit correspondence between the integrable modified KdV hierarchy and its dual integrable modified Camassa-Holm hierarchy. A Liouville transformation between the isospectral problems of the two hierarchies also relates their respective recursion operators, and serves to establish the Liouville correspondence between their flows and Hamiltonian conservation laws. In addition, a n...
متن کاملOn two-dimensional quantum gravity and quasiclassical integrable hierarchies
The main results for the two-dimensional quantum gravity, conjectured from the matrix model or integrable approach, are presented in the form to be compared with the world-sheet or Liouville approach. In spherical limit the integrable side for minimal string theories is completely formulated using simple manipulations with two polynomials, based on residue formulas from quasiclassical hierarchi...
متن کاملAlgebraic Properties of Gardner’s Deformations for Integrable Systems
An algebraic definition of Gardner’s deformations for completely integrable bi-Hamiltonian evolutionary systems is formulated. The proposed approach extends the class of deformable equations and yields new integrable evolutionary and hyperbolic Liouville-type systems. An exactly solvable two-component extension of the Liouville equation is found. Introduction. We consider the problem of constru...
متن کاملA bi-Hamiltonian approach to the Sine-Gordon and Liouville hierarchies
where Pk(u, ux, ...) are differential polynomials. A central role in their approach is played by the bi-Hamiltonian structure of the dispersionless limit (ǫ = 0) of the hierarchy (1.1). Such structure consists of a pair of compatible local Poisson brackets of hydrodynamic type (see [4]). Very important examples of integrable PDEs such as the KdV equation, the continuous limit of the Toda lattic...
متن کاملLiouville canonical form for compatible nonlocal Poisson brackets of hydrodynamic type, and integrable hierarchies
In the present paper, we solve the problem of reducing to the simplest and convenient for our purposes, “canonical” form for an arbitrary pair of compatible nonlocal Poisson brackets of hydrodynamic type generated by metrics of constant Riemannian curvature (compatible Mokhov–Ferapontov brackets [1]) in order to get an effective construction of the integrable hierarchies related to all these co...
متن کامل